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Domain Wall Production During Inationary Reheating
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We numerically investigate the decay, via parametric res-
onance, of the inaton with an m2�2 potential into a scalar
matter �eld with a symmetry breaking potential. We con-
sider the case where symmetry breaking takes place during
ination. We show that when expansion is not taken into ac-
count symmetry restoration and non-thermal defect produc-
tion during reheating is possible. However in an expanding
universe the �elds do not spend su�cient time in the instabil-
ity bands; thus symmetry restoration and subsequent domain
wall production do not occur.
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Introduction

The realisation that the decay of the inaton might
occur explosively, during a stage dubbed \pre-heating"
[1{3] and lead to a universe far from thermal equilib-
rium, has a number of important rami�cations. The most
obvious is that the temperature of the universe, after
thermalisation, may be much higher than under the old
model of reheating. Another is the recent construction
of a model for baryogenesis [4] which takes advantage of
the out-of-equilibrium nature of the universe shortly af-
ter pre-heating. We, on the other hand, will be interested
in the possibility of non-thermal phase transitions after
pre-heating, and the possible production of topological
defects.
This suggestion was �rst made by Kofman et al. [5],

and Tkachev [6]. The essential idea is that pre-heating,
via the mechanism of parametric resonance, typically
gives rise to very large uctuations in the �elds and it is
these that may restore a symmetry which has been bro-
ken by the time ination ends. The important point is
that symmetry restoration may occur even if the symme-
try breaking scale is higher than the �nal reheat temper-
ature. Then as the universe subsequently expands and
cools, phase transitions will result in the creation of topo-
logical defects. This would be very intriguing. For a start
we might �nd the re-emergence of a problem ination
was designed to solve, namely the monopole problem.
The creation of domain walls would also be potentially
problematic. However the production of strings may be
a desirable feature of such scenarios, in that strings can
be a seed for structure formation.

Khlebnikov et al. [7] have recently demonstrated that
non-thermal defect production indeed occurs during in-
ationary reheating. They considered a model in which
the inaton �eld � has a double well potential and is
coupled to massless scalar matter �elds Xi; i = 1 : : :N .
Similar results (obtained from 2-D simulations) have also
been shown by Kasuya and Kawasaki [8].
We study a di�erent model. In our work the inaton �

has a unique minimum and decays via parametric reso-
nance into a scalar matter �eld � with the discrete sym-
metry �! ��. That is, we are interested in the question
as to whether domain walls are produced. (Note that we
are not considering a two-�eld model of ination.) We
assume that symmetry breaking occurs during ination,
for if it occurs afterwards the symmetry will then be re-
stored a number of times by the oscillation of the ina-
ton alone, without any need for parametric resonance,
and defect production will almost certainly ensue. This
was pointed out by Kofman et al. in their original paper
[5], where this model was �rst examined in the context
of parametric resonance and defect production, and by
Kofman and Linde in [9].
We investigate both the expanding and non-expanding

cases and we show that symmetry restoration and defect
production only occur in the non-expanding case. How-
ever the defects are not stable. Our work is based on
3-D lattice simulations, though we also understand the
results from an analytical point of view.
The paper is set out as follows. We begin with a de-

tailed explanation of the model including necessary con-
straints on the model. The second section is devoted to
the analytical understanding of the model and predic-
tions for the full simulation. After this we highlight the
workings of the numerical code and present the results
from our simulations. The �nal section is a brief sum-
mary of our study and conclusion.

1. Model

We consider the simplest model of ination and reheat-
ing: the inaton � has potential 1

2m
2�2 and it decays into

a second scalar �eld �. We let � have the simplest po-
tential which allows symmetry breaking: 1

4�(�
2 � �20)

2,
and suppose it interacts with � through the interaction
term: 1

2g
2�2�2. Thus the full potential for the two-�eld

theory is:

V (�; �) =
1

2
m2�2 +

1

4
�(�2 � �20)

2 +
1

2
g2�2�2 (1)
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The most important constraint on our model is the
requirement that the symmetry breaking occurs during
ination. This is equivalent to demanding the interaction
term in (1) not lift the degeneracy of the potential in
the � direction. As � is homogeneous to a very good
approximation for initial times, we may write � � �(t)
so that the e�ective potential for � is:

V eff
� =

1

4
�(�2 � �20)

2 +
1

2
g2�2(t)�2 (2)

This has degenerate minima if ��20 > g2�(t)2. If this is
true at t = 0, then it is always true; for in the expanding
case � is redshifted to zero and in the non-expanding case
� is not observed to increase. If we de�ne �0 � �(0), then
the condition for degenerate minima becomes:

��20 > g2�20 (3)

Another condition follows from the requirement that
ination proceed as usual, despite the presence of �. For
this we must have the vacuum energy of � to be much
smaller than that of �:

1

4
��40 �

1

2
m2�20 (4)

When (4) is combined with (3), we obtain:

g2�20 � m2 (5)

which ensures the frequency of oscillation of � after in-
ation is dominated by m.
We next demand that the maximum reheat tempera-

ture be insu�cient to lead to a thermally-corrected po-
tential for � with the degeneracy lifted. Since TRH <

(m�0)
1

2 , this condition becomes:

�0 > (
m

�0
)
1

2 �0 (6)

Usually the �nal reheat temperature will be many orders
of magnitude smaller than we have indicated, so (6) is
much stricter than it needs to be. However it is easy
to satisfy and we will retain it in order to stress we are
interested in non-thermal defect production.
Finally there are the usual constraints on m and g2

arising from the COBE data: m � 10�6MP and g2 �
10�6; the latter ensures radiative corrections do not lead
to a too large self-coupling for � (though in a super-
symmetric model of ination this condition may not be
necessary [10]).

2. Analysis

Our working hypothesis is that parametric resonance
will generate large uctuations in � which will restore the
symmetry of the �-�eld in some regions of space. After
this, in such regions, � may evolve into the two degen-
erate minima of its potential, possibly forming a stable

domain wall. In other words, we expect the mechanism
of parametric resonance will be able to channel su�cient
energy from the inaton into the �-�eld in order to drive
� over the potential barrier. In this section we outline the
conditions for e�ective parametric resonance, considering
both the expanding and non-expanding cases.
We begin by assuming the usual at FRW universe, in

co-moving co-ordinates:

ds2 = dt2 � a2(t)(dx2 + dy2 + dz2)

To a good approximation the coherent oscillations of
the inaton rapidly give rise to a matter dominated uni-
verse so we may write: a(t) = (1 +mt)

2

3 , where t = 0 is
the time at the end of ination and we have used our free-
dom to scale the spatial co-ordinates to impose a(0) = 1.
If we put: a(t) = (1 +mt)n, we can simultaneously con-
sider the non-expanding case (n = 0) and the expanding
case (n = 2

3 )
1.

The equations of motion for the �elds � and � are the
standard ones for scalar �elds in a curved space-time with
minimal coupling to gravity:

��+ 3H _�� a�2r2�+ (m2 + g2�2)� = 0 (7)

��+ 3H _�� a�2r2�+ (�(�2 � �20) + g2�2)� = 0 (8)

where H � _a
a
.

These are the equations which are solved in our numer-
ical simulation. Here we point out that in our simulation
the scale factor a(t) is put in by hand, rather than deter-
mined in a self-consistent manner.
The initial conditions for � are those of the end of in-

ation i.e. when the slow roll approximation is no longer
valid. We �nd: �(0) � �0 =

1p
3�
MP and _�(0) = �m�0.

In addition we chosem = 10�6�0. For the non-expanding
case we will assume _�(0) = 0. As for �, ination dic-
tates it will be initially comprised of quantum uctua-
tions about one of the instantaneous minima of V eff

� ,

which are given by ��(t) � ��0p(1� g2�2(t)
��2

0

). Without

loss of generality we may choose the positive minimum.
To make headway in our analytical understanding of

the model we must make some simplifying approxima-
tions. As already noted, we may take � to be homoge-
neous to start with. Recalling (5), this allows us to solve

(7): � = �0 a(t)
� 3

2 cosmt, and to re-write (8) as:

��+ 3H _�� a�2r2�+
@

@�
V eff
� = 0 (9)

In order to understand the evolution of the �-�eld, at
least initially, we will expand V eff

� to quadratic order
about �+(t):

1The results of this section are valid only for these two values
of n.
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V eff
� �! U� = ��2+(t)(�� �+(t))

2 +
1

4
�(�40 � �4+(t))

(10)

How now do we ask if symmetry restoration occurs?
We note that U�(

1
2�+(t)) =

1
4��

4
0, which is the barrier

height of V eff
� . Thus the question as to whether � sur-

mounts the potential barrier of V eff
� may be replaced

with the question: does �, evolving under the inuence
of U�, ever become less than

1
2�+(t)?

With the substitution of V eff
� with U� in (9), we ob-

tain a linear equation for �. Upon rescaling: ft !
t
m
; x ! x

m
; � ! �0�; � ! �0�; g

2 ! (m
�0
)2 g2; � !

(m
�0
)2 �g, taking the Fourier transform and introducing

Xk � a
3

2 �k, we arrive at a Mathieu equation with (in
general) time-dependent co-e�cients, for the non-zero
momentum modes Xk:

�Xk + (Ak(t)� 2q(t) cos 2t)Xk = 0 (11)

where Ak =
k2

a2
+ 2��20 � g2

a3
and q = g2

2a3 .
The existence of exponentially growing, or unstable

solutions to the Mathieu equation is well known2 and,
in physics literature, has been termed parametric res-
onance. However recent work [12{14], inspired by the
pre-heating scenario, has led to new insight into the na-
ture of these solutions. For time-independent coe�cients,
we may identify three di�erent regions of instability. (i)
Narrow band resonance: Ak ' l2 � 2q, l = 1; 2 : : : and
q � 1. The solution Xk oscillates with period 2�, and is
modulated by an exponential function, e�kt, where �k is
called the characteristic exponent or growth index. Typ-
ically j�kj � q

2 . (ii) Broad band resonance: Ak � 2q and
q >� 1. The solution oscillates many times faster than
in the narrow band case and grows in exponential jumps,
occurring at time intervals of �. The overall growth index
may also be much larger: one �nds j�kj < 0:3. (iii) Neg-
ative instability: Ak < 2q. The solutions in this region
are almost all unstable and j�kj > 1 is possible. Recently
Greene et al. [14] have constructed a model which makes
use of this region.
The situation of the Mathieu equation with time-

dependent coe�cients is much more complicated. The
di�culty is that, during one oscillation of the driv-
ing force, Xk does not remain in one instability band
but in fact passes in and out of many such bands.
The result is that parametric resonance becomes essen-
tially haphazard|Xk may even decrease in amplitude
at times|and hence the term stochastic resonance has
been applied to this scenario. However exponential type
growth is still possible, and the work of Kofman et al.
[13] has done much to clarify this issue.

2For a good review see [11].

Returning to equation (11), we see that in our case Ak

is always greater than q because of (3), hence we will only
see broad band or narrow band resonance. A necessary
condition for parametric resonance3 [13] in these regions
is:

�2 � Ak � 2q

2
p
q

� 1 (12)

It is useful to introduce the dimensionless parameters:
� = g2, � = ��20 and  = ��2

0 . Then conditions (3), (4)
and (6) may be succinctly written: � < � �  < 106.

For n = 2
3 , �

2 !
p
2�p
�
t which must always become

larger than 1. Later we will see that the typical time for
symmetry restoration to begin in the non-expanding case
is t � 30. Thus to satisfy (12) in the expanding case we
will require

p
�� �. But � < �. So we must have:

p
�� 1 (13)

Or in other words, g2phys � 10�12. We conclude that if
(13) is not satis�ed, and we believe it is not in any re-
alistic model, then the system is not long enough in the
instability regions to restore the symmetry. The conclu-
sion is further reinforced if we realise we also require4

�k >
3
2H , but that initially 3

2H(0) = 1 > 0:3 � �k;max.
The necessary condition for parametric resonance in

the case of n = 0 is much less stringent. (12) gives:

� � �+

r
�

2
(14)

A test of the validity of our approximation in the non-
expanding case is the time taken for symmetry to start
being restored. As mentioned previously, what we need
to calculate is the time at which � �rst becomes less than
1
2�+(t). The modes in the resonance band will dominate
the behaviour of � so:

� � 1

(2�)
3

2

m

�0

Z
res: band

d 3k �k e
�ik�x

� 1

(2�)
3

2

m

�0
4� k2res

�k

2
j�k;resj

� k2res�k

(2�)
1

2

m

�0

e�ktp
!res

where �k is the width of the resonance band and !2
res �

Ak;res � 2q cos 2t = k2res + 2� � � � � cos 2t. The ap-
pearance of m

�0
and

p
!res is due to � starting out as

quantum uctuations [15].

3This is a more generous condition than Eq. (56) in [13],
where ��1 replaces 1 on the RHS. We have found, for our
parameter choices, that (12) includes the (two) main broad
band instability regions.
4This follows from a simple-minded calculation of the ratio
of energy gained by Xk to energy lost due to expansion.
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Typically in our parameter range, we �nd a region of
broad band resonance for � slightly greater than �, with
kres � �k � 1 and �k ' 0:25. Then the statement
� � 1

2�+(t) becomes
m
�0
��

1

4 e�kt <� �0, which implies:

t >� 4 ln (106�
1

4 �
1

2 ) � 30 (15)

To summarise: our analysis suggests that in the non-
expanding case the conditions for parametric resonance
depend only on � and �, whereas the time taken for
parametric resonance to restore the symmetry of the �-
�eld is determined mainly by . In the expanding case
we do not expect domain walls to be produced. We now
turn to the full simulation of the two-�eld system.

3. Simulation and Results

The classical equations of motion (7) and (8) are a good
approximation to the behaviour of an actual matter �eld,
�, coupled to the inaton, provided the mode amplitudes
of � are large. Although initially these are taken to be
quantal uctuations, the modes we are interested in are
in the resonance band and hence they quickly grow and
become classical [16].
We work in terms of the rescaled, non-dimensional

quantities of the previous section. The universe becomes
the usual 3-dimensional lattice in co-moving co-ordinate
space, and we apply periodic boundary conditions. The
�elds are evolved using a leap-frog scheme, which is an
explicit algorithm second-order accurate in time. The
spatial derivatives are evaluated to fourth-order accuracy.
The results presented here were obtained on 643 lat-

tices, though we also checked representative cases on 1283

lattices. We varied the lattice spacing, the only pro-
viso being that we remained sensitive to the momentum
modes in the expected resonance bands, and obtained es-
sentially identical data. The total energy of the system
was conserved to better than 0:1%. Two other tests con-
vinced us of the accuracy of our simulation: we were able
to repeat the results of [17], and, in an O(2) �-�eld sim-
ulation, we found a faithfully modelled, collapsing string
loop.
A brief note about the determination of the initial con-

ditions for � is warranted. As mentioned before, we treat
� initially as quantum uctuations about one of the in-
stantaneous minima of its potential. One may think of
the quantum uctuations in momentum space as an in�-
nite collection of harmonic oscillators (with time depen-
dent frequencies in this case) [18]. Our approach essen-
tially was to pick the occupation numbers of the modes on
the lattice randomly from a Gaussian distribution with k-
dependent width [15]. We also included a random phase
and then inverse Fourier transformed to obtain � in con-
�guration space. We checked that our results were not
sensitively dependent on the particular random numbers
chosen. A �nal important point is that the lattice spac-
ing gives a natural cuto� to the high momentum modes,

0 20 40 60 80 100 120 140 160 180 200
−2

0

2

4

6

8

10

12
x 10

−3

t

<χ>

( <χ2> − <χ2> )1/2

FIG. 1. The mean and variance of � in time (� = 100,
� = 130 and  = 104).

and one must choose this so that Efluct: � Einflaton.
We examined the region in parameter space of �; � �

100 and  � 104; in other words g2phy � 10�10; �phy �
10�6 and �0;phy � 0:01�0 � 3 � 1016 GeV. The choice
of these parameters was partially determined by the re-
quirements that we be sensitive to the instability bands
and the box be large enough to include any defects pro-
duced [20]. The numerical parameters were: lattice spac-
ing �x = 0:1� 1 and time step �t = 0:02.
The �rst result is that we did not �nd any evidence

of symmetry restoration in an expanding universe. In all
cases we considered, � ! �0 and � merely redshifted to
0. This is as predicted by (13) and Kofman et al. [5].
The non-expanding scenario is more interesting how-

ever. Figure 1 shows the behaviour of h�i and p(h�2i �
h�i2) for � = 100, � = 130 and  = 104. This is typical of
the cases in which symmetry is restored: the mean value
of �! 0 and the uctuations grow to be of the order of
�0. Also typical is the fact that the back-reaction of �
on � is very slight. h�i continues to oscillate sinusoidally
and the uctuations of � are only of order 3� 10�3 � 1
at t = 200.
Plotted in �gure 2 is the fraction, f�, of the volume of

the box with � < 0. The jumps in f� occur at intervals of
� which is as expected; � is the period of the driving term
in the Mathieu equation i.e. �2. Note too the onset of
symmetry restoration is at t � 30, con�rming our earlier
order of magnitude estimate. However, considering all
our runs, we did not �nd agreement with the speci�c form
of (15). (Usually t = 15�80.) On the other hand varying
, for �xed � and �, did not alter whether symmetry was
or was not restored, as was our prediction.
In the non-expanding case, symmetry restoration

(when it occurs) gives rise to non-thermal production
of defects. However these defects are not stable. This

4
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FIG. 2. The fraction of the volume with � < 0 (� = 100,
� = 130 and  = 104).
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FIG. 3. The mean of � in time (� = 100, � = 110 and
 = 104).

can be seen in our simulations: the regions of � < 0 are
essentially randomly scattered throughout the box (even
when they account for half the volume of the box) and
percolate. In addition they are uncorrelated in time.
There is one problem with the particular case we have

been considering above: it does not satisfy (14). Thus the
analysis of section 2 cannot be entirely correct. Figures
3 and 4 detail what was an unexpected result but which
led to a more complete understanding of our model. Here
� = 100, � = 110 and  = 104. Clearly what is hap-
pening is an initial series of global sign changes, prior
to eventual local symmetry restoration. The change in
sign is not important because the symmetry of � remains
broken, but it does indicate we were naive to imagine �
would uctuate about �+(t) for early times.
It is more appropriate to put �(x; t) = �h(t)+��(x; t),

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

   
   

  f
−

FIG. 4. The fraction of the volume with � < 0 (� = 100,
� = 110 and  = 104).

where �h satis�es the homogeneous version of (9). Then

the linearised equation for Xk � a
3

2 ��k, which replaces
(11), is:

�Xk + (
k2

a2
+ �( 3�2h(t)� �20) + g2�2(t))Xk = 0 (16)

The behaviour of �h is quite delicate. Numerical so-
lution of its ODE shows that for early times it is true
�h � �+, except when � � � where we �nd �h � ��+.
This is the sign change seen in �gures 3 and 4. At later
times �2h typically oscillates about �2+, with a frequency
several times greater than that of the inaton. For n = 2

3 ,
�2h ! �2+ ! �20 so in this case we believe our earlier
analysis is essentially unchanged. However for n = 0,
�2h tends to increase in amplitude. This ruins a straight-
forward analysis in terms of a Mathieu equation for Xk

(which would come about if �2h = �2+). Numerical analy-
sis of (16) for n = 0 though does reveal exponential-type
solutions. In fact parametric resonance appears to be
much more likely: the instability bands are larger than
those of the broad band regime of the Mathieu equation.
We are currently working on an analytical understanding
of these results [20].
To conclude this section �gure 5 shows the region of

the ��� plane we investigated where symmetry restora-
tion occurs, for the non-expanding case. We stress that
this plot is an extrapolation from 45 simulations we per-
formed, and as such to be taken only as a rough guide.
However it indicates two features which we are certain
about. Firstly the existence of band structure. This is
reminiscent of the Mathieu equation instability bands,
even down to their relative sizes. Secondly the fact that
as � increases for �xed �, symmetry restoration is no
longer possible. From this graph we conservatively de-
duce a condition for symmetry restoration:
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FIG. 5. The region of symmetry restoration (darker shad-
ing) in the �� � plane.

� < 2� (17)

Also shown in �gure 5 is our prediction from section 2.
The discrepancy is the most striking evidence that our
earlier analysis was inadequate.

4. Conclusions

We have numerically investigated the decay of the in-
aton into a scalar matter �eld � with a symmetry break-
ing potential, when the symmetry is broken during ina-
tion. In the non-expanding case we found that symme-
try restoration is possible via parametric resonance. The
analysis is complicated but interestingly the regions of
instability are much larger than those of the Mathieu
equation. This situation of more e�cient parametric res-
onance has also been seen in the work of Zanchin et al.
[19]. We think it would be useful to more fully under-
stand equations like (16), perhaps utilising the methods
of [13]. Finally we found that non-thermal defect pro-
duction occurs, but that the defects are not stable.
In the expanding case we found that domain wall pro-

duction did not take place. This leads us to conclude
that the inaton may safely couple to � with the poten-
tial as in (1). Actually the precise form for the potential
may be unimportant. Recall that the symmetry of � is
broken before the end of ination. In fact, if there are
to be no uctuations due to the initial symmetry break-
ing in our Hubble volume, the symmetry must be broken
early enough to allow for the usual number of e-foldings
by the time ination is over. In our model this means
� >� 100� [20] which is to be compared with (17). This
amounts (literally) to a very formidable barrier to sym-
metry restoration. This suggests it is unlikely that there
will be defect production in any realistic model in which
� has the symmetry breaking potential and the symme-
try is broken during ination.
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